Infinite-dimensional moment-SOS hierarchy for nonlinear partial differential equations - Polynomial OPtimization
Pré-Publication, Document De Travail Année : 2023

Infinite-dimensional moment-SOS hierarchy for nonlinear partial differential equations

Résumé

We formulate a class of nonlinear evolution partial differential equations (PDEs) as linear optimization problems on moments of positive measures supported on infinite-dimensional vector spaces. Using sums of squares (SOS) representations of polynomials in these spaces, we can prove convergence of a hierarchy of finite-dimensional semidefinite relaxations solving approximately these infinite-dimensional optimization problems. As an illustration, we report on numerical experiments for solving the heat equation subject to a nonlinear perturbation.
Fichier principal
Vignette du fichier
heatmom.pdf (515.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04117218 , version 1 (05-06-2023)
hal-04117218 , version 2 (17-12-2024)

Identifiants

Citer

Didier Henrion, Maria Infusino, Salma Kuhlmann, Victor Vinnikov. Infinite-dimensional moment-SOS hierarchy for nonlinear partial differential equations. 2024. ⟨hal-04117218v2⟩
85 Consultations
44 Téléchargements

Altmetric

Partager

More