ESEO-Tech est le centre de Recherche, Developpement et Innovation de l'ESEO. L'activité de recherche est centrée sur la thématique des systèmes intelligents et communicants, du capteur à la décision.
ESEO-Tech regroupe 4 équipes de recherche : AGE : Automatique et Génie électrique prend appui sur le développement des énergies renouvelables (EnR) dans le paysage de la production d’énergie électrique et travaille au pilotage et à l’optimisation des réseaux électriques intelligents, en partenariat avec l’IREENA – EA 4642, Institut de recherche en Énergie Électrique de Nantes Atlantique. ERIS : L'équipe de Recherche en Informatique et Systèmes s’articule avec un premier axe autour de l'intelligence artificielle pour créer et améliorer des systèmes d'aide à la décision pour les systèmes d'information. Son deuxieme axe s'interesse à l'ingénierie logicielle et en particulier l'ingénierie des modèles en développant des outils de transformation, synchronisation, interprétation ou éxécution de modèles avec un focus particulier sur les systèmes embarqués. L'équipe est partiellement rattachée au LERIA-EA2645 (Laboratoire d’étude et de recherche en informatique de l’Université d’Angers). GSII : Groupe Signal Image et Instrumentation s’intéresse aux domaines du traitement du signal et de l’image et de l’intelligence artificielle pour la mesure, l’instrumentation et le développement de capteurs, sur des applications en géophysique, contrôle non destructif et biomédical, en lien avec le LAUM UMR 6613 –CNRS, le laboratoire d’Acoustique de Le Mans Université. RF-EMC : L'équipe Radio-Fréquences et Compatibilité Électromagnétique travaille à la fois à l’échelle du composant électronique et du système. Elle crée de nouvelles architectures de systèmes et dispositifs de transmission, de récupération/transmission d’énergie électromagnétique et mène des travaux sur la compatibilité électromagnétique : modélisation et caractérisation prédictive des comportements. Ses membres sont associés à l’IETR - Institut d’Electronique et des Technologies du numérique UMR CNRS 6164.
Le laboratoire accueille 35 permanents, dont 27 enseignants-chercheurs, qui élaborent dans leurs domaines respectifs de nouveaux concepts, expérimentent et mènent leurs projets jusqu’à la démonstration en environnement réel. ESEO-Tech accueille également chaque année une trentaine de doctorants et post-doctorants. |
Mots clés
Nonlinearity
Binary sequence
Calf pain
Temperature distribution
Optimization
Malan
Accelerometry
Systèmes embarqués
MDE
Modeling
IEC
Super-Twisting Sliding Mode Control
OCL
Anticontrol of chaos
Chaos
Model-checking
Integrated circuit
Cable shielding
Action
Vehicle dynamics
UML
Microstrip
Near field
Coda Wave Interferometry
GTEM cell
Simulation
Sleep apnea
Accelerometer
Dairy cows
PCB
Analytical model
Structural health monitoring
FDTD
Initial conditions
Accelerométrie
Symmetry
Modelling
Conducting materials
Active transformation
Modélisation
Malai
Immunity testing
Genetic algorithm
Claudication
Temperature measurement
Apprentissage par Renforcement
Thoracic outlet syndrome
IC
EMC
Microembolus
Integrated circuit modeling
Model Driven Engineering
Radio frequency
Instrument
Bifurcation
Monitoring
Classification
Machine learning
Switching piecewise-constant controller
IDM
Pins
Mapping
Field-to-trace coupling
Interaction
Capacitors
Anti-diabetic properties
Model transformation
Ischemia
DPI
Ultrasound
Autonomous Vehicles
Independent chaotic attractors
Entropy
Integrated circuits
Transcutaneous oximetry
Machine Learning
Pathophysiology
Acoustoelasticity
Aging
Full-wave simulation
Big Data
Equations
Susceptibility
Calibration
Antioxidant activity
Concrete
Artefact rejection
Electromagnetic compatibility
Bandits-Manchots Combinatoires
Metamaterial
Prediction
Diagnosis
Emission
Damage detection
Active Front Steering
Field-to-line coupling
Immunity
Peripheral artery disease
Reliability
Optimal command
|
|
Nos dernières publications
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability, 2024, Microelectronics Reliability 159 (2024), 159, pp.115447. ⟨10.1016/j.microrel.2024.115447⟩. ⟨hal-04622696⟩
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Degradation and Reliability Modeling of EM Robustness of Voltage Regulators Based on ADT: An Approach and A Case Study. IEEE Transactions on Device and Materials Reliability, 2024, 24 (1), pp.2-13. ⟨10.1109/TDMR.2023.3340426⟩. ⟨hal-04334074⟩
-
Safae Ouahabi, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, et al.. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine drugs, 2024, 22 (6), pp.240. ⟨10.3390/md22060240⟩. ⟨hal-04616809⟩
-
Lokesh Devaraj, Qazi Mashaal Khan, Alastair Ruddle, Alistair Duffy, Richard Perdriau, et al.. Improvements Proposed to Noisy-OR Derivatives for Multi-Causal Analysis: A Case Study of Simultaneous Electromagnetic Disturbances. International Journal of Approximate Reasoning, 2024, 164, pp.109068. ⟨10.1016/j.ijar.2023.109068⟩. ⟨hal-04301458⟩
-
Nathan Fradet, Nicolas Gutowski, Fabien Chhel, Jean-Pierre Briot. Byte Pair Encoding for Symbolic Music. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023), Association for Computational Linguistics, Dec 2023, Singapore, Singapore. pp.2001-2020, ⟨10.18653/v1/2023.emnlp-main.123⟩. ⟨hal-03976252v2⟩